Partial k-trees with maximum chromatic number

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance graphs with maximum chromatic number

Let D be a finite set of integers. The distance graph G(D) has the set of integers as vertices and two vertices at distance d ∈ D are adjacent in G(D). A conjecture of Xuding Zhu states that if the chromatic number of G(D) achieves its maximum value |D| + 1 then the graph has a clique of order |D|. We prove that the chromatic number of a distance graph with D = {a, b, c, d} is five if and only ...

متن کامل

Trees with Certain Locating-Chromatic Number

The locating-chromatic number of a graph can be defined as the cardinality of a minimum resolving partition of the vertex set such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices in are not contained in the same partition class. In this case, the coordinate of a vertex in is expressed in terms of the distances of to all partition classe...

متن کامل

Trees with maximum p-reinforcement number

Let G = (V , E) be a graph and p a positive integer. The p-domination number γp(G) is the minimum cardinality of a set D ⊆ V with |NG(x) ∩ D| ≥ p for all x ∈ V \ D. The p-reinforcement number rp(G) is the smallest number of edges whose addition to G results in a graph G with γp(G′) < γp(G). It is showed by Lu et al. (2013) that rp(T ) ≤ p + 1 for any tree T and p ≥ 2. This paper characterizes a...

متن کامل

Graphs with chromatic number close to maximum degree

Let G be a color-critical graph with χ(G) ≥ Δ(G) = 2t + 1 ≥ 5 such that the subgraph of G induced by the vertices of degree 2t+1 has clique number at most t−1. We prove that then either t ≥ 3 and G = K2t+2 or t = 2 and G ∈ {K6, O5}, where O5 is a special graph with χ(O5) = 5 and |O5| = 9. This result for t ≥ 3 improves a case of a theorem by Rabern [9] and for t = 2 answers a question raised by...

متن کامل

Characterizing all trees with locating-chromatic number 3

Let c be a proper k-coloring of a connected graph G. Let Π = {S1, S2, . . . , Sk} be the induced partition of V (G) by c, where Si is the partition class having all vertices with color i. The color code cΠ(v) of vertex v is the ordered k-tuple (d(v, S1), d(v, S2), . . . , d(v, Sk)), where d(v, Si) = min{d(v, x)|x ∈ Si}, for 1 ≤ i ≤ k. If all vertices of G have distinct color codes, then c is ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2002

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(02)00586-1